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The study of unsteady boundary layer flows with self~induced pressure is of great theoretical and prac-
tical interest in modern aerodynamics. The use of matched asymptotic expansions for the analysis of such
flows [1-8] made it possible to establish the asymptotic nature of the flow as the characteristic Reynolds num-
ber tends to infinity, similarity laws, and also the momentum laws which agree well with experimental data at
large subcritical Reynolds numbers. As in the case of purely stationary flows [9, 10], the interaction of un-
steady boundary layer with inviscid external flow has a significant effect on the nature of the flow mainly in
certain localized regions of the flow with longitudinal dimensions of the order of IRe™8 [1~10]. For time in-
tervals At~ (I/u,,)Re V4 the flow in the two regions of the flow with transverse scales of the order of [ Re™?
and I Re™Y/2, respectively, are quasisteady [1-8]. At the same time the flow in the viscous wall region whose
thickness is on the order of I Re™¥/® happens to be appreciably unsteady and is described by unsteady, incom-
pressible boundary layer equations. The pressure gradient in these equations is not specified as in Prandtl's
boundary layer theory but determined during the process of solution of the problem from the condition of vis~
cous sublayer interaction with external supersonic flow. The body surface temperature was assumed constant
in [1-10] along the entire interaction region. Thanks to this, the density and dynamic viscosity of the fluid in
the entire viscous region with thickness of the order of I Re™® are constant to the first approximation and
their values coincided with respective values in undisturbed boundary layer on the body surface. In this case
the solution of the equations of motion in the viscous region can be found independently of the energy equation
whose solution is determined later from the computed velocity field [1-8]. The present work investigates the
interaction of laminar boundary layer and supersonic flow arising from variation in temperature of the small
surface region of the body by an amount equal to the order of the surface temperature itself over a character-
istic time At~ (I/u,)Re V¢,

Consider an unsteady flow caused by heating a segment of a flat plate in supersonic flow as the charac-
teristic Reynolds number Re = pawUwl/few = ¢”? approaches infinity, Here pe, Uw, o are the density,
velocity, and absolute viscosity of the free stream, ! is the distance from the flat plate leading edge to that
segment of the surface which is subjected to rapid heating by any internal or external energy source, For con-
venience all linear dimensions are referred to I, velocity components to U, density to pw, time to I/ tw,
pressure to poouio, enthalpy to u?,and dynamic viscosity to p., and in what follows only dimensionless quan-
tities will be used. Assume that the characteristic length of the heated segment is on the order ¢¥4, and the
surface enthalpy (or temperature) varies by a value of the order of unity over a characteristic time At ~ g2,
In this case it is possible to distinguish three different regions of the flow with equal length ~&¥* in the
neighborhood of the heated segment: inviscid region of the supersonic flow (region 1), whose streamwise and
transverse dimensions are of the same order Ax~ y ~ 33/4; the inviscid vortex flow whose transverse scale
is of the order of the undisturbed boundary layer y ~ e (region 2); viscous wall layer (region 3) with a thick-
ness of the order €%? in which the velocity and enthalpy fluctuations are of the same order as the velocity and
enthalpy at the surface of the body in the undisturbed boundary layer upstream of the interaction region,

Asymptotic expansions for coordinates and flow parameters in the region 1 can be represented in the
form

z — 1 = &%, y = &5/%;, = 2, . (1)

u=14 Ellzulli(th Zp Y+ P = 1/4Me + Slfzpu (81, 23, ).
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Here M, is the free stream Mach number. The substitution of asymptotic expansions (1) in Navier—Stokes

equations and the limiting case & — 0 show that, as in [1-~10], the flow in the region 1 is a weakly disturbed

supersonic flow and is described by linear supersonic flow theory., The solution to the wave equation is de~

termined from D'Alembart's equation which makes it possible to obtain a relation between pressure disturb-
ance py; and vertical velocity v, at y; = 0: »

. 1
pu (24, 0) = W“"l‘ vn (b %1, 0). (2)

Note that the flow parameters at y; = 0 are determined by matching asymptotic expansions for regions 1 and
2.

The flow in the region 2 consisting of the bulk of the flow in the undisturbed boundary layer, in the first
approximation, as shown in [1-8], is locally inviscid and does not affect the pressure distribution in the inter-
action region, Asymptotic expansions and equations describing the flow in this region as well as their solu~-
tions are obtained in the present case in a manner similar to [8]. Note, however, that time derivatives of flow
parameters are absent in equations describing the flow in regions 1, 2 and the solutions depend on the variable
t as a parameter [6-8],

Asymptotic expansions for flow parameters in the viscous wall layer close to the surface (region 3) have
the following form:

2 — 1 = ¥y, y = ey, t = &1/%,, (3)
U= 51/41‘/31 (s 25, Y3) + ..., p= U’YMio"f“ 31/2}’31 (t3: T3, Ya),
v = &%y (ts, T3y ¥s) - - o o= hgylts, 3, Y) F . . oy
p = P30(t_3> Tz, Yg) o b= Paolls s, ) + - -

The substitution of expansion (3) in Navier—Stokes equations with the limiting case € —~ 0 and also
matching the asymptotic expansions in region 1-3 in order to determine the required boundary conditions [8]
make it possible to obtain the following boundary-value problem for the region 3:
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Here and in what follows the index W indicates flow parameters at the wall; w is the index in the relation for
the variation of viscosity with temperature; hy, is the stagnation enthalpy at the plate surface in undisturbed
boundary layer with y, = 0 (hy,(0) = hy,). Enthalpy hy, is eliminated from the system of equations (4) using
the equation of state and the following new variables are introduced:

0—2 B
0oyt 1 (3)
__ B - I
1.3 - ﬁ3/4‘1(5)/4 X: .’/3 - 9_4;% Ya
61/4a.(3)/4puo4
/2 174
_ p00 Q '
Iy = PR a7 T, ugy = ‘—‘—1/ U,
- 4.4
B8
siapi/a vl V)
ey P : a : oo
Ugy = 2 Ps0 = Poofl, Pao = Poo M,

0
——— S R S—
30+2 V,‘p31 ﬁllzpmlz >
e (1]
o



where p,, is the density in the undisturbed boundary layer for the surface temperature upstream of the inter-
action region with y, = 0; 8 = (M%, ~ 1)1/ ¢, In the new variables (5) equations and boundary conditions (4) for
the viscous wall layer of the interaction reglon take the form

6RU , 9RV
dT + X + 5 aYy =0, (6)
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U0, X,Y)=Y, ROX7Y)=1, P, X)=0,

%—»1 R—>1a Y-—»>-4 o0 0 X—— oo,

U(T,X,00=V(T,X,00=0, R(T,X,0)=Ry(T,X).

A solution has been obtained in the present paper for the boundary-value problem (6) for the case of a
small increase in surface temperature, or, in other words, a small variation in fluid density at the surface:
Ry =1+ 6Ryw (0< 6 « 1). The boundary~value problem (6) can be linearized in this case using the small
parameter 6 and seeking a solution in the form R=1+06R, U=Y+ 06Uy, V=6V, P= 6P,.

The following system of equations and boundary conditions are obtained in this case for the fluctuating
flow parameters:

aR 4R U, av, 7)
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U(T, X, 0) = Vl(T, X,0)= 0, R(T, X, 0) = R;(T, X).

Finite-difference method with implicit scheme with respect to time was used to solve system (7). The-
system of differential equations (7) was replaced by the corresponding difference equations of first-order ac~
curacy with respect to the variables T and X, and second-order accuracy with respect to the variable Y. The
solution of the system of difference equations was found using relaxation method with iterations at each time
layer,

The density field R;(Tj+4s X, Y) was found at the time layer Tj+; and then the pressure distribution was
specified from which the velocity field, and, in particular A;(Tj+y; X) was determined. Then the variation in
the displacement thickness A, thus obtained was subjected to relaxation and a new pressure distribution was
obtained. The procedure is continued till the difference in the fluctuations in viscous stress 9U,/3Y and dis-
placement thickness at two consecutive iterations become less than a certain small specified value. In order
to start the iteration process at the Tj+; layer the pressure distribution from the pressure layer at time Ty
was used. At the initial time T = 0 the fluctuation in flow parameters was assumed zero. As an example the
results of the computation of unsteady flow in viscous sublayer with Prandtl number o = 1 are given where the
variation in density at the surface with time T and streamwise coordinate X are specified as follows:

- sin(% T) exp (— BX3, 0< T <1,
{—exp(—BXY),  I'>1

At time T = 0 the density fluctuation on the surface with Y = 0 equals zero and the flow in the interac-
tion region remains undisturbed. At the following instants of time as T > 0 the fluid density at the surface
Y = 0 begins to decrease (0< 6 «< 1, Ryw < 0) which corresponds to an increase in surface temperature in this
region, In this case the viscous wall layer begins to heat up, leading to a change in shear stress at the surface
89U /8Y = (cf — cfy)/ Ocfy + wRyw with cg, being the nondimensional skin-friction coefficient in the undisturbed
boundary layer upstream of the interaction region and the parameters B and w in the boundary-value problem
(7) were assumed equal to one (B = w = 1). Curves 1-3 represent the distribution of the quantity 9 U{/8Y on
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Fig. 3

the flat plate surface in the interaction region at moments T = 0.25, 0,5, 1.0, respectively. The curve 4 repre-
sents stationary distribution of the disturbed shear stress 9U,/8Y obtained after establishing the flow in the
viscous sublayer of the interaction region (T 2 10). Shear stress, as indicated by computations, most appreci-
ably decreases in the region of maximum variation in density Ryw (T, X) or in the region of maximum in-
crease in surface temperature (X = 0). At time T = 1.0 the density at the surface at X = 0 reaches a minimum
value at the origin (X = 0) (surface temperature in this case has a maximum at X = 0). At this moment T = 1
shear stress attains its minimum value 8U,/8Y = ~0.56 at X = —0,2. Then while establishing the flow at T >
1.0 the adverse pressure gradient in the interaction region begins to decrease, thanks to which even the maxi-
mum value of the fluctuation in shear stress at the surface decreases. The distribution of pressure fluctuation
Py (T, X) in the interaction region is shown in Fig. 2, where the curves 1-3 correspond to moments T = 0,5,
1.0, 10.5. Curve 3 represents the stationary distributions of the pressure fluctuation obtained after establish~
ing the flow in the viscous sublayer. These computational results show that the local surface heating can lead
to a reduction in shear stress in a certain region of the surface and even to a local flow separation and a sig~
nificant redistribution of pressure along the surface of the body, and, consequently, to a change in its momen~-
tum characteristics, Numerical results showed that for low values of w fluctuations in shear stress and pres-
sure become less than in the case w = 1 in the interaction region near the heated segment of the surface. The
stationary distributions of fluctuating shear stress 8U,/8Y along the surface obtained by solving the boundary-
value problem (7), (8) for the cases w=1, B= 1 (curve 1) and w = 0,5, B = 1.0 (curve 2) are shown in Fig. 3.
Curve 3 is for the stationary distribution with respect to the shear stress for the case w = 1.0, B = 2.0 corre-
sponding to the interaction of nonstationary boundary layer and supersonic flow near the surface region where
the heating is relatively less. The variation in surface shear stress also decreases in this case when com-
pared to the cases w =1, B=1,

In conclusion, we note that similarity parameters obtained by the introduction of new variables (5) make
it possible to analyze the effect of various flow parameters on the nonstationary flow with interaction near the
heated segments of the body surface.
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TEMPERATURE DISTRIBUTION OVER THE
SURFACES OF SPHERICAL SHELLS IN A
PURGED DENSE LAYER WITH INTERNAL
HEAT GENERATION

L. K. Vukovich, Vv, I. Lelekov, UDC 536,244:621,039
A. V. Nikolaev, 8. §. Timar’',
and N. V. Tkach

Instruments are being developed at present in which a spherical filling is enclosed between perforated
walls and its thickness amounts to three-six particle diameters. The specific conditions for the entry of gas
into the filling (through holes in the perforated wall) and its relatively small thickness should have an effect
on the nature of the gas motion in the filling, and consequently on heat exchange with spheres placed in various
arrays. The distribution of the local characteristics of heat or mass exchange through the surface of spheres
in the packings has been investigated in a series of experimental researches. The results obtained are pre-
sented in the form of a distribution of the local coefficients of heat exchange over the surface, However, a
number of practical problems require knowledge of the local surface temperatures (for example, for the calcu~
lation of the thermal stresses in the casings enveloping a heat-generating sphere), which it is impossible to
determine from the existing local heat transfer coefficients determined by detectors of the local thermal and
mass fluxes, in connection with the interrelationship between the internal and external heat exchange problems
[1}. An approximate computational dependence has been proposed in [2] for the determination of the maximum
temperature nonuniformity in the casing enveloping a heat-generating core. This dependence has been derived
for a single type of packing of the spheres. The absence in it of the heat-generation power remains incompre-
hensible., An expression for the relative maximum increase of the temperature differential in the casing caused
by the different intensity of heat exchange at various points of its surface has been obtained in [3] by an alter-
nate numerical solution of the time-independent thermal conductivity equation for a spherical heat-generating
element under boundary conditions of the third kind (determined experimentally) in the range of variation 0,4~
2,85 of the ratios of the thermal conductivity of the shell material and the coolant. However, this dependence
has been derived for a specific packing of the spheres with a ratio of the channel and sphere diameters of less
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